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Monochromatic path crossing exponents and graph connectivity in two-dimensional percolation
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We consider the fractal dimensionsdk of the k-connected part of percolation clusters in two dimensions,

generalizing the cluster (k51) and backbone (k52) dimensions. The codimensionsx̃k522dk describe the

asymptotic decay of the probabilitiesP(r ,R);(r /R) x̃k that an annulus of radiir !1 andR@1 is traversed by
k disjoint paths, all living on the percolation clusters. Using a transfer matrix approach, we obtain numerical

results for x̃k , k<6. They are well fitted by the ansatzx̃k5
1

12k21
1

48k1(12k)C, with C50.0181
60.0006.
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Percolation is a classical model of statistical mechan
@1,2#, and plays an important role in the study of disorder
systems@3#. It is also one of the simplest models displayin
a critical point. In two dimensions, exact values for a varie
of critical exponents have been found over the past two
cades, and quite recently many of them have been confir
by rigorous probabilistic arguments@4#. Most of these expo-
nents can be defined through the fractal dimensions of s
ably defined sets at the percolation threshold.

In the present paper we shall be concerned with an infi
family of critical exponents whose exact values remain
known to this date. These exponents characterize the con
tivity structure of the percolating cluster~s! at criticality.

Following Tutte@5#, we define a graph to bek-connected
~for k>1) if no separation into disconnected subgraphs
possible by eliminating at mostk21 vertices along with
their ingoing edges. It is easy to see that we may equ
lently require any two vertices in the graph to be connec
by ~at least! k disjoint paths. 1-connected graphs are sim
the percolation clusters, and to inquire into the connectiv
structure of a given cluster, we may decompose it into
largest 2-connected components@5# ~better known as
2-blocks, or ‘‘blobs,’’ in the percolation literature!, and so on.
Tutte has shown that the decomposition of a 2-connec
graph into its largest 3-blocks is unique@5#. The 3-blocks are
relevant for applying Kirchhoff’s laws to resistor network
and are useful for analyzing the performance of cert
algorithms@6#.

To better study the transport properties of percolat
clusters, we henceforth consider critical percolation in
large square of linear sizeL, and we specialize to cluster
that connect to the boundary of the system. In the limitL
→`, the boundary becomes the ‘‘point at infinity,’’ and th
above definition states that a given vertex isk-connected if it
is connected to infinity by~at least! k disjoint paths within a
percolating cluster. Following Ref.@6#, we shall call the set
of k-connected vertices thek-bone. The 2-bone is of cours
nothing but the~geometrical! backbone, i.e., the part of th
percolation cluster, which sustains a nonzero current whe
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voltage difference is applied between its two terminal poin
~As usual, we disregard rare Wheatstone’s-bridge-l
arrangements.!

We shall here be interested in the fractal dimensiondk of
thek-bone, assuming its mass to change asLdk with increas-
ing system size. The cluster dimensiond15 91

48 has been
known exactly for a long time@7–9#. The backbone dimen
sion has recently been related to the solution of a par
differential equation@9#, which, however, appears to be in
tractable, even numerically. Another analytical result wo
mentioning is the third-order development ofd2 around the
upper critical dimension (e562D) @10#; this is, however,
not of much avail for furnishing a precise numerical value
two dimensions. Still, numerical estimates are available fr
Monte Carlo @11# and transfer matrix methods@12#: d2
51.643160.0006. After the completion of this work, a firs
estimate ford3 appeared:d351.260.1 @6#. Actually, this
result was obtained from block decomposition of clust
and backbones, but for reasons of universality we expect
apply to the 3-bone as well. Also, the above definitions
stated for site percolation, but the exponents should be
same for bond percolation, with the clusters being separa
by cutting edges rather than vertices.

A useful alternative formulation of thek-bone problem is
obtained by passing to an annular geometry, limited by t
concentric circles of radiir !1 and R@1, by means of a
conformal mapping.~This is permissible since percolatio
has been proved to be conformally invariant@4#.! Interpret-
ing the inner circle as the point that is a potential elemen
the k-bone, and the outer one as the point at infinity, we
that a given percolating configuration in the annulus contr
utes to thek-bone if and only if the two circles are connecte
by k disjoint paths on the percolating cluster~s!; see Fig. 1.
The fractal dimensiondk of the k-bone is linked to the scal
ing of the path-crossing probabilityPk(r ,R);(r /R) x̃k

through the codimensionx̃k522dk @13#.
A more general class of path-crossing exponents can

defined from traversing configurations where some of
paths live on the percolating clusters~black paths!, and the
rest on thedual clusters~white paths!. Interestingly, the cor-
responding critical exponentsxk only depend on the numbe
of paths,k>2, and not on their colors, provided that both a
represented@13#. Their values,

xk5
1

~k221!, ~1!
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are known rigorously@13# and differ from those of the mono
chomatic exponentsx̃k defined above.

Some information onx̃k is provided by the inequalities

x̃k,xk11 . ~2!

This inequality is valid since a configuration contributing
xk11 can be taken to havek black paths and one white path
Clearly, it then also contributes tox̃k . Furthermore, ask
→`, the effect of a single extra path should be small and
expect it to be of the same order if one changes the colo
one of the k existing paths; thus,xk112 x̃k'xk112xk
5O(k).

In view of Eq. ~1!, we find the asymptotic resultx̃k
5 1

12 k21O(k) as k→`. In analogy with Eq.~1! it thus
seems natural to conjecture that the spectrumx̃k is quadratic
in k. From x̃15 5

48 we then get

x̃k5
1

12
k21

1

48
k1~12k!C, ~3!

with C50.018160.0006 from the numerical result onx̃2
@12#.

FIG. 1. Annular geometry endowed with critical percolatio
~here shown in the continuum limit!. The existence of two disjoin
traversing paths on the clusters implies that this configuration c
tributes to the 2-bone.
05510
e
of

To check the conjectured form of the spectrum, Eq.~3!,
we now turn to our numerical results. But first we mu
briefly describe our transfer matrix algorithm; it is a natu
generalization of the one used in Ref.@12#.

First we consider the annulus of Fig. 1 as a cylinder w
circular space and radial time. We have tried several cho
of lattices to discretize it. For practical applications, it tur
out to be best~see Ref.@12#! to use a square lattice with
‘‘light-cone’’ orientation, such that the periodic directio
forms a 45 deg angle with the two axes of the lattice. W
then define the discrete time slices such that they inter
the lattice at vertices only; we callL the number of such
vertices ~in units of the lattice spacing the period is the
LA2).

Next we define the basis of states on which our trans
matrix acts. A basis state is acollection of path configura-
tions; a path configuration is the data of the positions of
k paths at a given time, with possible additional ‘‘arches’’
allow backtracking of paths, see Fig. 2. Note that the enc
ing of states can be easily implemented as follows: ba
states are encoded as sorted lists of path configuations,
path configurations are represented by words of lengtL
made out of the four letters$opening, closing, path, empty%
and which containk letters path. The lettersopeningand
closingdefine the backtracking arches.

The transfer matrix itself acts on a basis state by ‘‘evo
ing’’ all the path configurations it contains with a single co
figuration of bonds~i.e., percolating/nonpercolating state
each bond! and recombining the result into a single sta
then summing over all configurations of bonds. Evolving
path configuration means considering all possible contin
tions of the paths from one time slice to the next, includi
possible appearances of new arches, or existing arches
necting to paths or other arches. We use sparse matrix
torization techniques to build up the entire transfer matr

n-

FIG. 2. Path configurations fork53, L55.
59375
09155
32764
9522
TABLE I. Eigenvalueslk(L) of the transfer matrix and estimate ofx̃k for 2<k<6.

k 2 3 4 5 6

L
4 0.718747415570 0.413598206498 0.121093750000
5 0.775012703547 0.526618869796 0.257122218539 0.061523437500
6 0.812529692986 0.603476157424 0.362299981029 0.153371684616 0.0310058
7 0.839330907375 0.658986646726 0.443031423565 0.237989873966 0.0889050
8 0.859432882632 0.700919030179 0.506272495802 0.310651059489 0.1509775
9 0.875067710677 0.556925756584 0.372225212770 0.21005033
10 0.263993624780

x̃k
0.356960.0006 0.7760.02 1.3360.03 2.160.2 3.060.3
2-2
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dihedral symmetries are quotiented over once a time s
has been completed.

As in Ref. @12#, it is convenient to allow ‘‘perpendicula
tangencies’’ for paths even though they should be in princ
excluded; that is, to allow two paths to touch at one vertex
the configuration whenever the tangent of either path is p
pendicular to the transfer direction~we still exclude ‘‘parallel
tangencies’’!. It is expected, and we have numerically ve
fied, that inclusion of either or both types of tangenc
and/or changing the lattice orientation does not alter the
finite-size correction of the eigenvalue of the transfer mat
which yieldsx̃k . However, the particular choice of allowin
perpendicular tangencies on the light-cone oriented lat
has the advantage of greatly decreasing the number of s
generated~see below! and improving the convergence pro
erties of the finite-size data.

Finally, the following procedure is used to compute t
matrix elements of the transfer matrix: Starting with an ar
trary basis state~e.g., the one consisting of a singlek-path
configurationpathkemptyL2k), one acts on it with the trans
fer matrix, stores the corresponding matrix elements, t
considers all new basis states generated, and iterates the
cedure until no further new states are generated@14#. What
we build this way is a submatrix of the transfer matrix co
responding to a stable subspace; this submatrix is, in f
much smaller than the full transfer matrix, which is essen
for practical applications. One then extracts its largest eig
value lk(L), which yields the codimensionx̃k via the for-
mula

1

22L
lk~L !512

p x̃k

L
1o~L21!. ~4!
tt.
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We show in Table I the results for 2<k<6. Since the
memory and time requirements presumably grow factoria
with L, we cannot push the calculation very far inL. It is,
however, sufficient to estimatex̃k , which is also given in
Table I together with approximate error bars. The data
k52 are, in fact, taken from Ref.@12#, where the state spac
was reduced by exploiting that the case of two paths can
treated as an extra backtracking arch.

For k.2, all the exponentsx̃k are consistent with, bu
less precise than, the conjectured spectrum~3!, with C given
by x̃2. We also note that the inequalityxk, x̃k seems to be
satisfied, and it would be interesting if one could prove th
Another open question is the possible rationality of thex̃k ;
in this respect, the failure of computing these exponents
conformal field theory is particularly intriguing.

For k>5, the dimensionsdk522 x̃k are negative. Physi-
cally, this means thatk-bones withk>5 become increasingly
rare as the system size increases. Of course, the lattice m
does not support ak-block whenk exceeds the coordinatio
number of the lattice. However, the exponentsx̃k character-
ize the continuum limit, and are thus believed to be indep
dent of the microscopic details; an appropriate lattice defi
tion of thek-bone for highk is obtained by demanding tha
k-independent paths connect any small neighborhood to
point at infinity.

Finally, we remark that thek-bone problem extends to th
Kasteleyn-Fortuin representation@15# of the q-state Potts
model~bond percolation being the limitq→1). Our numeri-
cal algorithm can straightforwardly be adapted to this case
well.

We thank S. Kirkpatrick and J. Vannimenus for use
discussions.
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