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We consider the fractal dimensiodg of the k-connected part of percolation clusters in two dimensions,
generalizing the clusterkE&1) and backbonek(=2) dimensions. The codimensiorg= 2 — dy, describe the
asymptotic decay of the probabiliti€Xr,R) ~ (r/R)*x that an annulus of radii<1 andR>1 is traversed by
k disjoint paths, all living on the percolation clusters. Using a transfer matrix approach, we obtain numerical
results for'x,, k<6. They are well fitted by the ansatg,=i5k?+ k+(1—k)C, with C=0.0181
+0.0006.
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Percolation is a classical model of statistical mechanicyoltage difference is applied between its two terminal points.
[1,2], and plays an important role in the study of disordered/As usual, we disregard rare Wheatstone’s-bridge-like
systemg3]. It is also one of the simplest models displaying arrangements.

a critical point. In two dimensions, exact values for a variety Ve shall here be interested in the fractal dimensigmf

of critical exponents have been found over the past two defn€k-bone, assuming its mass to_change;%‘ts\é\{ith increas-
Qo system size. The cluster dimensiodR=7; has been

cades, and quite recently many of them have been confirméknOWn exactly for a long timé7—9l. The backbone dimen-
by rigorous prObab'“St'C argumentd]. Most pf these €XPO" " gion has recgntly beengrela?ed t]o the solution of a partial
nents can be defined through the fractal dimensions of SUitsifterential equatior{9], which, however, appears to be in-
ably defined sets at the percolation threshold. ~_tractable, even numerically. Another analytical result worth
In the present paper we shall be concerned with an infinitgnhentioning is the third-order developmentaf around the
family of critical exponents whose exact values remain un-upper critical dimensiond=6—D) [10]; this is, however,
known to this date. These exponents characterize the conneget of much avail for furnishing a precise numerical value in
tivity structure of the percolating clustey at criticality. two dimensions. Still, numerical estimates are available from
Following Tutte[5], we define a graph to beconnected Monte Carlo[11] and transfer matrix methodgl2]: d,
(for k=1) if no separation into disconnected subgraphs is=1.6431=0.0006. After the completion of this work, a first
possible by eliminating at most—1 vertices along with €stimate ford; appearedd;=1.2+0.1 [6]. Actually, this

their ingoing edges. It is easy to see that we may equivar_esult was obtained from block decomposition of clusters

lently require any two vertices in the graph to be connecte@nd backbones, but for reasons of universality we expect it to

by (at leas} k disjoint paths. 1-connected graphs are simpl apply to the 3-bone as well. Also, the above definitions are
y (at leasl K disjoint paths. 1-connected grapns aré Simplyq;qieq for site percolation, but the exponents should be the
the percolation clusters, and to inquire into the connectivit

: o 'Ysame for bond percolation, with the clusters being separated
structure of a given cluster, we may decompose it into 'tsby cutting edges rather than vertices.

largest  2-connected component§] (better known as A useful alternative formulation of thiebone problem is
2-blocks, or “blobs,” in the percolation literatureand so on.  gptained by passing to an annular geometry, limited by two
Tutte has shown that the decomposition of a 2-connectegloncentric circles of radir<1 andR>1, by means of a
graph into its largest 3-blocks is unigi]. The 3-blocks are  conformal mapping(This is permissible since percolation
relevant for applying Kirchhoff's laws to resistor networks, has been proved to be conformally invarigt.) Interpret-
and are useful for analyzing the performance of certairing the inner circle as the point that is a potential element of
algorithms[6]. the k-bone, and the outer one as the point at infinity, we see
To better study the transport properties of percolatiorthat a given percolating configuration in the annulus contrib-
clusters, we henceforth consider critical percolation in autes to thek-bone if and only if the two circles are connected
large square of linear size, and we specialize to clusters by k disjoint paths on the percolating clug®r see Fig. 1.
that connect to the boundary of the system. In the limit The fractal dimensiom, of the k-bone is linked to the scal-
—o, the boundary becomes the “point at infinity,” and the ing of the path-crossing probabilityP,(r,R)~ (r/R)*
above definition states that a given vertekisonnected if it through the codimensior,=2—d, [13].
is connected to infinity byat leas} k disjoint paths within a A more general class of path-crossing exponents can be
percolating cluster. Following Ref6], we shall call the set defined from traversing configurations where some of the
of k-connected vertices thebone. The 2-bone is of course paths live on the percolating clusteitsiack pathg and the
nothing but the(geometrical backbone, i.e., the part of the rest on thedual clusters(white paths. Interestingly, the cor-
percolation cluster, which sustains a nonzero current when gesponding critical exponentg only depend on the number
of paths k=2, and not on their colors, provided that both are
represented13]. Their values,
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FIG. 2. Path configurations fde=3, L=5.
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To check the conjectured form of the spectrum, B,
we now turn to our numerical results. But first we must
briefly describe our transfer matrix algorithm; it is a natural
generalization of the one used in REL2].

First we consider the annulus of Fig. 1 as a cylinder with
circular space and radial time. We have tried several choices

FIG. 1. Annular geometry endowed with critical percolation Of lattices to discretize it. For practical applications, it turns
(here shown in the continuum limitThe existence of two disjoint OUt to be bestsee Ref[12]) to use a square lattice with a
traversing paths on the clusters implies that this configuration con-light-cone” orientation, such that the periodic direction
tributes to the 2-bone. forms a 45 deg angle with the two axes of the lattice. We
then define the discrete time slices such that they intersect
the lattice at vertices only; we call the number of such
vertices (in units of the lattice spacing the period is then
Ly2).

Next we define the basis of states on which our transfer
2) matrix acts. A basis state is @llection of path configura-

tions; a path configuration is the data of the positions of our
This inequality is valid since a configuration contributing to kK paths at a given time, with possible additional “arches” to
Xk+1 can be taken to haveblack paths and one white path. allow backtracking of paths, see Fig. 2. Note that the encod-
Clearly, it then also contributes ®,. Furthermore, ak ing of states can be easily implemented as fellowe: basis
.=, the effect of a single extra path should be small and wetates are enco_ded as sorted lists of path configuations, and
expect it to be of the same order if one changes the color fath configurations are represented by words of lergth

ot ) Ve _ made out of the four letter®pening, closing, path, empty
cin&lgf the k existing paths; thusXic.1=Xc=Xi1=Xk a0 \which contairk letters path The lettersopeningand

In view of Eq. (1), we find the asympotic resu closingdefine the backtracking arches.
— LKk2+O(K) as k. In analogy with Eq.(1) it thus The transfer matrix itself acts on a basis state by “evolv

) 0 ) ing” all the path configurations it contains with a single con-
seems natural to conjecture that the spectryris quadratic  figuration of bonds(i.e., percolating/nonpercolating state of
in k. Fromx,;= 2 we then get each bon@l and recombining the result into a single state,
then summing over all configurations of bonds. Evolving a
path configuration means considering all possible continua-
tions of the paths from one time slice to the next, including
possible appearances of new arches, or existing arches con-
necting to paths or other arches. We use sparse matrix fac-
torization techniques to build up the entire transfer matrix;

are known rigorously13] and differ from those of the mono-
chomatic exponents, defined above.
Some information o, is provided by the inequalities

X< Xt 1 -

~ 1 1
xk=1—2k2+4—8k+(1—k)c, 3

with C=0.0181+0.0006 from the numerical result oxy
[12].

TABLE I. Eigenvalues\,(L) of the transfer matrix and estimate Xxf for 2<k<6.

k 2 3 4 5 6

L

4 0.718747415570  0.413598206498  0.121093750000

5 0.775012703547  0.526618869796  0.257122218539  0.061523437500

6 0.812529692986  0.603476157424  0.362299981029  0.153371684616  0.031005859375
7 0.839330907375  0.658986646726  0.443031423565  0.237989873966  0.088905009155
8 0.859432882632  0.700919030179  0.506272495802  0.310651059489  0.150977532764
9 0.875067710677 0.556925756584  0.372225212770  0.210050339522
10 0.263993624780

Xk 0.3569+ 0.0006 0.770.02 1.33:0.03 2.10.2 3.0-0.3
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dihedral symmetries are quotiented over once a time slice We show in Table | the results for=?k=<6. Since the
has been completed. memory and time requirements presumably grow factorially
As in Ref.[12], it is convenient to allow “perpendicular with L, we cannot push the calculation very farlinlt is,
tangencies” for paths even though they should be in principlhowever, sufficient to estimate,, which is also given in
excluded; that is, to allow two paths to touch at one vertex inTable | together with approximate error bars. The data for
the configuration whenever the tangent of either path is petk=2 are, in fact, taken from Reff12], where the state space
pendicular to the transfer directigwe still exclude “parallel  was reduced by exploiting that the case of two paths can be
tangencies). It is expected, and we have numerically veri- treated as an extra backtracking arch.
fied, that inclusion of either or both types of tangencies For k>2, all the exponents, are consistent with, but
and/or changing the lattice orientation does not alter the firsless precise than, the conjectured spect(8mnwith C given
finite-size correction of the eigenvalue of the transfer matrix,by X,. We also note that the inequalif<X, seems to be
which yieldsx, . However, the particular choice of allowing satisfied, and it would be interesting if one could prove this.
perpendicular tangencies on the light-cone oriented latticenother open question is the possible rationality of ¥pe
has the advantage of greatly decreasing the number of statgsthis respect, the failure of computing these exponents by
generatedsee below and improving the convergence prop- conformal field theory is particularly intriguing.
erties of the finite-size data. Fork=5, the dimensionsl,=2—X, are negative. Physi-
Finally, the following procedure is used to compute thecally, this means thdtbones withk=5 become increasingly
matrix elements of the transfer matrix: Starting with an arbi-rare as the system size increases. Of course, the lattice model
trary basis statée.g., the one consisting of a sindtepath  does not support k-block whenk exceeds the coordination
configurationpath‘empty-~*), one acts on it with the trans- number of the lattice. However, the exponextscharacter-
fer matrix, stores the corresponding matrix elements, thefye the continuum limit, and are thus believed to be indepen-
considers all new basis states generated, and iterates the ptent of the microscopic details; an appropriate lattice defini-
cedure until no further new states are generdfiegd. What  tion of the k-bone for highk is obtained by demanding that
we build this way is a submatrix of the transfer matrix cor- k-independent paths connect any small neighborhood to the
responding to a stable subspace; this submatrix is, in facpoint at infinity.
much smaller than the full transfer matrix, which is essential Finally, we remark that thk-bone problem extends to the
for practical applications. One then extracts its largest eigenKasteleyn-Fortuin representatidii5] of the g-state Potts
value \(L), which yields the codimensior, via the for- model(bond percolation being the limi— 1). Our numeri-

mula cal algorithm can straightforwardly be adapted to this case as
well.
i)\k(L)zl_ W_X‘<+o(|_71)_ (4) We thank S. Kirkpatrick and J. Vannimenus for useful
2L L discussions.
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